Vector Calculus · Engineering Mathematics · GATE ME

Start Practice

Marks 1

1

The value of the surface integral

GATE ME 2024 Engineering Mathematics - Vector Calculus Question 5 English

where S is the external surface of the sphere x2 + y2 + z2 = R2 is

GATE ME 2024
2

A vector field

𝐁(𝑥, 𝑦, 𝑧) = 𝑥 𝑖̂ + 𝑦 ĵ − 2𝑧 k̂

is defined over a conical region having height ℎ = 2, base radius 𝑟 = 3 and axis along z, as shown in the figure. The base of the cone lies in the x-y plane and is centered at the origin.

If 𝒏 denotes the unit outward normal to the curved surface 𝑆 of the cone, the value of the integral

$\rm \int_SB.n\ dS$

equals _________ . (Answer in integer)

GATE ME 2023 Engineering Mathematics - Vector Calculus Question 1 English
GATE ME 2023
3
Consider a cube of unit edge length and sides parallel to co-ordinate axes, with its centroid at the point (1, 2, 3). The surface integral $\int_A \vec{F}.d\vec{A}$ of a vector field $\vec{F}=3x\hat{i}+5y\hat{j}+6z\hat{k}$ over the entire surface A of the cube is ______.
GATE ME 2022 Set 2
4

Given a function $\rm ϕ = \frac{1}{2} (x^2 + y^2 + z^2) $ in three-dimensional Cartesian space, the value of the surface integral

S n̂ . ∇ϕ dS

where S is the surface of a sphere of unit radius and is the outward unit normal vector on S, is

GATE ME 2022 Set 1
5

For three vectors $$\vec A = 2\hat j - 3\hat k,\vec B = - 2\hat i + \hat k\ and\;\vec C = 3\hat i - \hat j,$$ where î, ĵ and k̂ are unit vectors along the axes of a right-handed rectangular/Cartesian coordinate system, the value of $$\left( {\vec {A.} \left( {\vec B \times \vec C} \right) + 6} \right)$$ is _______.

GATE ME 2020 Set 1
6
Curl of vector $$\,V\left( {x,y,x} \right) = 2{x^2}i + 3{z^2}j + {y^3}k\,\,$$ at $$x=y=z=1$$ is
GATE ME 2015 Set 2
7
Let $$\phi $$ be an arbitrary smooth real valued scalar function and $$\overrightarrow V $$ be an arbitrary smooth vector valued function in a three dimensional space. Which one of the following is an identity?
GATE ME 2015 Set 3
8
Curl of vector $$\,\,\overrightarrow F = {x^2}{z^2}\widehat i - 2x{y^2}z\widehat j + 2{y^2}{z^3}\widehat k\,\,$$ is
GATE ME 2014 Set 2
9
Divergence of the vector field $${x^2}z\widehat i + xy\widehat j - y{z^2}\widehat k\,\,$$ at $$(1, -1, 1)$$ is
GATE ME 2014 Set 3
10
For the spherical surface $${x^2} + {y^2} + {z^2} = 1,$$ the unit outward normal vector at the point $$\left( {{1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }},0} \right)$$ is given by
GATE ME 2012
11
The divergence of the vector field $$\left( {x - y} \right)\widehat i + \left( {y - x} \right)\widehat j + \left( {x + y + z} \right)\widehat k$$ is
GATE ME 2008
12
Stokes theorem connects
GATE ME 2005
13
The expression curl $$\left( {grad\,f} \right)$$ where $$f$$ is a scalar function is
GATE ME 1996
14
If $$\overrightarrow V $$ is a differentiable vector function and $$f$$ is sufficienty differentiable scalar function then curl $$\left( {f\overrightarrow V } \right) = $$ _______.
GATE ME 1995

Marks 2

1

Consider two vectors

$\rm \vec a = 5 i + 7 j + 2 k $

$\rm \vec b = 3i - j + 6k$

Magnitude of the component of $\vec a$ orthogonal to $\vec b$ in the plane containing the vectors $\vec a$ and $\vec{\bar b}$ is ______ (round off to 2 decimal places).

GATE ME 2022 Set 1
2
For the vector $$\overrightarrow V = 2yz\widehat i + 3xz\widehat j + 4xy\widehat k,$$ the value of $$\,\nabla .\left( {\nabla \times \overrightarrow \nabla } \right)\,\,$$ is ______________.
GATE ME 2017 Set 1
3
The surface integral $$\int {\int\limits_s {F.ndS} } $$ over the surface $$S$$ of the sphere $${x^2} + {y^2} + {z^2} = 9,$$ where $$\,F = \left( {x + y} \right){\rm I} + \left( {x + z} \right)j + \left( {y + z} \right)k\,\,$$ and $$n$$ is the unit outward surface normal, yields ___________.
GATE ME 2017 Set 2
4
A scalar potential $$\,\,\varphi \,\,$$ has the following gradient: $$\,\,\nabla \varphi = yz\widehat i + xz\widehat j + xy\widehat k.\,\,$$ Consider the integral $$\,\,\int_C {\nabla \varphi .d\overrightarrow r \,\,} $$ on the curve $$\overrightarrow r = x\widehat i + y\widehat j + z\widehat k.\,\,$$ The curve $$C$$ is parameterized as follows: $$\,\,\left\{ {\matrix{ {x = t} \cr {y = {t^2}} \cr {z = 3{t^2}} \cr } \,\,\,\,\,\,\,} \right.$$ and $$1 \le t \le 3.\,\,\,\,\,$$
The value of the integral is _________.
GATE ME 2016 Set 2
5
The value of the line integral $$\,\,\oint\limits_C {\overrightarrow F .\overrightarrow r ds,\,\,\,} $$ where $$C$$ is a circle of radius $${4 \over {\sqrt \pi }}\,\,$$ units is ________.

Here, $$\,\,\overrightarrow F x,y = y\widehat i + 2x\widehat j\,\,$$ and $$\,\overrightarrow r $$ is the UNIT tangent vector on the curve $$C$$ at an arc length s from a reference point on the curve. $$\widehat i$$ and $$\widehat j$$ are the basis vectors in the $$X-Y$$ Cartesian reference. In evaluating the line integral, the curve has to be traversed in the counter-clockwise direction.

GATE ME 2016 Set 3
6
The surface integral $$\,\,\int {\int\limits_s {{1 \over \pi }} } \left( {9xi - 3yj} \right).n\,dS\,\,$$ over the sphere given by $${x^2} + {y^2} + {z^2} = 9\,\,$$ is __________.
GATE ME 2015 Set 2
7
The velocity field on an incompressible flow is given by
$$V = \left( {{a_1}x + {a_2}y + {a_3}z} \right)i + \left( {{b_1}x + {b_2}y + {b_3}z} \right)j\,$$ $$ + \left( {{c_1}x + {c_2}y + {c_3}z} \right)k,\,\,$$
where $${{a_1} = 2}$$ and $${{c_3} = - 4.}$$ The value of $${{b_2}}$$ is ________.
GATE ME 2015 Set 1
8
The value of $$\int\limits_C {\left[ {\left( {3x - 8{y^2}} \right)dx + \left( {4y - 6xy} \right)dy} \right],\,\,} $$ (where $$C$$ is the region bounded by $$x=0,$$ $$y=0$$ and $$x+y=1$$) is ________.
GATE ME 2015 Set 3
9
The integral $$\,\,\oint\limits_C {\left( {ydx - xdy} \right)\,\,} $$ is evaluated along the circle $${x^2} + {y^2} = {1 \over 4}\,$$ traversed in counter clockwise direction. The integral is equal to
GATE ME 2014 Set 1
10
The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $$F = xi + yj + zk$$ defined with respect to a Cartesian coordinate system having $$i, j$$ and $$k$$ as unit base vectors. $$$\int {\int\limits_S {{1 \over 4}\left( {F.n} \right)dA} } $$$

Where $$S$$ is the sphere, $$\,\,{x^2} + {y^2} + {z^2} = 1\,\,$$ and $$n$$ is the outward unit normal vector to the sphere. The value of the surface integral is

GATE ME 2013
11
The divergence of the vector field $$\,3xz\widehat i + 2xy\widehat j - y{z^2}\widehat k$$ at a point $$(1,1,1)$$ is equal to
GATE ME 2009
12
The directional derivative of the scalar function $$f(x, y, z)$$$$ = {x^2} + 2{y^2} + z\,\,$$ at the point $$P = \left( {1,1,2} \right)$$ in the direction of the vector $$\,\overrightarrow a = 3\widehat i - 4\widehat j\,\,$$ is
GATE ME 2008
13
The area of a triangle formed by the tips of vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is
GATE ME 2007
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12