1
GATE ME 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Maximize $$\,\,\,\,Z = 15{x_1} + 20{x_2}$$
Subject to
$$\eqalign{ & 12{x_1} + 4{x_2} \ge 36 \cr & 12{x_1} - 6{x_2} \le 24 \cr & \,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr} $$

The above linear programming problem has

A
infeasible solution
B
unbounded solution
C
alternative optimum solutions
D
degenerate solution
2
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
For the linear programming problem:
$$\eqalign{ & Maximize\,\,\,\,\,Z = 3{x_1} + 2{x_2} \cr & Subject\,\,to\,\,\,\, - 2{x_1} + 3{x_2} \le 9 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1} - 5{x_2} \ge - 20 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr} $$

The above problem has

A
Unbounded solution
B
Infeasible solution
C
Alternative optimum solution
D
Degenerate solution
3
GATE ME 2014 Set 3
Numerical
+2
-0
Consider an objective function $$Z\left( {{x_1},{x_2}} \right) = 3{x_1} + 9{x_2}$$ and the constraints
$$\eqalign{ & {x_1} + {x_2} \le 8, \cr & {x_1} + 2{x_2} \le 4, \cr & {x_1} \ge 0,{x_2} \ge 0, \cr} $$

The maximum value of the objective function is ________________.

Your input ____
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
A linear programming problem is shown below.
$$\eqalign{ & Maximize\,\,\,\,3x + 7y \cr & Subject\,\,to\,\,\,3x + 7y \le 10 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4x + 6y \le 8 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,\,\,y \ge 0 \cr} $$

It has ..............

A
an unbounded objective function
B
exactly one optimal solution
C
exactly two optimal solutions
D
infinitely many optimal solutions
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12