1
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following Linear Programming problem $$(LLP)$$
Maximize: $$Z = 3{x_1} + 2{x_2}$$
$$\,\,$$ Subject $$\,\,$$ to
$$\eqalign{
& \,\,\,\,\,\,\,{x_1} \le 4 \cr
& \,\,\,\,\,\,\,{x_2} \le 6 \cr
& 3{x_1} + 2{x_2} \le 18 \cr
& {x_1} \ge 0,\,\,{x_2} \ge 0 \cr} $$
2
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
After introducing slack variables $$s$$ and $$t$$, the initial basic feasible solution is represented by the table below (basic variables are $$s=6$$ $$t=6,$$ and the objective function value is $$0$$).
After some simplex iterations, the following table is obtained
From this, one can conclude that
3
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
The dual for the $$LP$$ is
4
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear programming problem with two variables and two constraints. The objective function is: Maximize $${x_1} + {x_2}.$$ The corner points of the feasible region are $$(0,0), (0,2), (2,0)$$ and $$(4/3, 4/3).$$
If an additional constraint $${x_1} + {x_2} \le 5$$ is added, the optimal solution is
Questions Asked from Linear Programming (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude