Linear Programming ยท Industrial Engineering ยท GATE ME

Start Practice

Marks 1

Marks 2

1

At the current basic feasible solution (bfs) $v_0 (v_0 \in \mathbb{R}^5)$, the simplex method yields the following form of a linear programming problem in standard form:

minimize $z = -x_1 - 2x_2$

s.t.

$x_3 = 2 + 2x_1 - x_2$

$x_4 = 7 + x_1 - 2x_2$

$x_5 = 3 - x_1$

$x_1, x_2, x_3, x_4, x_5 \geq 0$

Here the objective function is written as a function of the non-basic variables. If the simplex method moves to the adjacent bfs $v_1 (v_1 \in \mathbb{R}^5)$ that best improves the objective function, which of the following represents the objective function at $v_1$, assuming that the objective function is written in the same manner as above?

GATE ME 2024
2

A manufacturing unit produces two products Pl and P2. For each piece of P1 and P2, the table below provides quantities of materials M1, M2, and M3 required, and also the profit earned. The maximum quantity available per day for M1, M2 and M3 is also provided. The maximum possible profit per day is โ‚น ______

M1 M2 M3 Profit per piece ( โ‚น)
P1 2 2 0 150
P2 3 1 2 100
Maximum quantity available per day 70 50 40

GATE ME 2022 Set 2
3
Maximize $$\,\,\,\,\,\,\,\,\,Z = 5{x_1} + 3{x_2}$$
Subject to $$\,\,\,\,\,\,\,\,\,\,{x_1} + 2{x_2} \le 10,$$
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1} - {x_2} \le 8, \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1},{x_2} \ge 0 \cr} $$

In the starting simplex tableau, $${x_1}$$ and $${x_2}$$ are non-basic variables and the value of $$Z$$ is zero. The value of $$Z$$ in the next simplex tableau is __________________.

GATE ME 2017 Set 2
4
Two models, $$P$$ and $$Q,$$ of a product earn profits of Rs. $$100$$ and Rs. $$80$$ per piece, respectively. Production times for $$P$$ and $$Q$$ are $$5$$ hours and $$3$$ hours, respectively, while the total production time available is $$150$$ hours. For a total batch size of $$40,$$ to maximize profit, the number of units of $$P$$ to be produced is ____________.
GATE ME 2017 Set 1
5
A firm uses a turning center, a milling center and a grinding machine to produce two parts. The table below provides the machining time required for each part and the maximum machining time available on each machine. The profit per unit on parts $${\rm I}$$ and $${\rm II}$$ are Rs. $$40$$ and Rs. $$100,$$ respectively. The maximum profit per week of the firm is Rs. _______________ GATE ME 2016 Set 3 Industrial Engineering - Linear Programming Question 9 English
GATE ME 2016 Set 3
6
Maximize $$\,\,\,\,Z = 15{x_1} + 20{x_2}$$
Subject to
$$\eqalign{ & 12{x_1} + 4{x_2} \ge 36 \cr & 12{x_1} - 6{x_2} \le 24 \cr & \,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr} $$

The above linear programming problem has

GATE ME 2016 Set 1
7
For the linear programming problem:
$$\eqalign{ & Maximize\,\,\,\,\,Z = 3{x_1} + 2{x_2} \cr & Subject\,\,to\,\,\,\, - 2{x_1} + 3{x_2} \le 9 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1} - 5{x_2} \ge - 20 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr} $$

The above problem has

GATE ME 2015 Set 3
8
Consider an objective function $$Z\left( {{x_1},{x_2}} \right) = 3{x_1} + 9{x_2}$$ and the constraints
$$\eqalign{ & {x_1} + {x_2} \le 8, \cr & {x_1} + 2{x_2} \le 4, \cr & {x_1} \ge 0,{x_2} \ge 0, \cr} $$

The maximum value of the objective function is ________________.

GATE ME 2014 Set 3
9
A linear programming problem is shown below.
$$\eqalign{ & Maximize\,\,\,\,3x + 7y \cr & Subject\,\,to\,\,\,3x + 7y \le 10 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4x + 6y \le 8 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,\,\,y \ge 0 \cr} $$

It has ..............

GATE ME 2013
10
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The manufacturer can make a maximum profit of Rs.

GATE ME 2011
11
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The unit worth of resource $${R_2}$$. i.e. dual price of resource $${R_2}$$ in Rs. per $$kg$$ is

GATE ME 2011
12
Consider the following Linear Programming problem $$(LLP)$$

Maximize: $$Z = 3{x_1} + 2{x_2}$$
$$\,\,$$ Subject $$\,\,$$ to
$$\eqalign{ & \,\,\,\,\,\,\,{x_1} \le 4 \cr & \,\,\,\,\,\,\,{x_2} \le 6 \cr & 3{x_1} + 2{x_2} \le 18 \cr & {x_1} \ge 0,\,\,{x_2} \ge 0 \cr} $$

GATE ME 2009
13
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$

The dual for the $$LP$$ is

GATE ME 2008
14
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$

After introducing slack variables $$s$$ and $$t$$, the initial basic feasible solution is represented by the table below (basic variables are $$s=6$$ $$t=6,$$ and the objective function value is $$0$$).
GATE ME 2008 Industrial Engineering - Linear Programming Question 18 English 1

After some simplex iterations, the following table is obtained
GATE ME 2008 Industrial Engineering - Linear Programming Question 18 English 2
From this, one can conclude that

GATE ME 2008
15
Consider a linear programming problem with two variables and two constraints. The objective function is: Maximize $${x_1} + {x_2}.$$ The corner points of the feasible region are $$(0,0), (0,2), (2,0)$$ and $$(4/3, 4/3).$$

If an additional constraint $${x_1} + {x_2} \le 5$$ is added, the optimal solution is

GATE ME 2005
16
Consider a linear programming problem with two variables and two constraints. The objective function is: Maximize $${x_1} + {x_2}.$$ The corner points of the feasible region are $$(0,0), (0,2), (2,0)$$ and $$(4/3, 4/3).$$

Let $${y_1}$$ and $${y_2}$$ be the decision variables of the dual and $${v_1}$$ and $${v_2}$$ be the slack variables of the dual of the given linear programming problem. The optimum dual variables are

GATE ME 2005
17
A company produces two types of toys: $$P$$ and $$Q.$$ Production time of $$Q$$ is twice that of $$P$$ and the company has a maximum of $$2000$$ time units per day. The supply of raw material is just sufficient to produce $$1500$$ toys (of any type) per day. Toy type $$Q$$ requires an electric switch which is available @ $$600$$ pieces per day only. The company makes a profit of Rs.$$3$$ and Rs.$$5$$ on type $$P$$ and $$Q$$ respectively. For maximization of profits, the daily production quantities of $$P$$ and $$Q$$ toys should respectively be
GATE ME 2004
18
A manufacturer produces two types of products, $$1$$ and $$2,$$ at production levels of $${x_1}$$ and $${x_2}$$ respectively. The profit is given is$$2{x_1} + 5{x_2}.$$ The production constraints are $$$\eqalign{ & {x_1} + 3{x_2} \le 40 \cr & 3{x_1} + {x_2} \le 24 \cr & {x_1} + {x_2} \le 10 \cr & {x_1} > 0,\,{x_2} > 0 \cr} $$$

The maximum profit which can meet the constraints is

GATE ME 2003

Marks 5

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12