1
GATE ECE 1990
MCQ (Single Correct Answer)
+2
-0.6
The CMRR of the differential Amplifier of the fig is equal to
2
GATE ECE 1989
MCQ (Single Correct Answer)
+2
-0.6
Refer to Fig.
3
GATE ECE 1988
MCQ (Single Correct Answer)
+2
-0.6
The OP-AMP shown in fig. below is ideal. $$R\, = \,\sqrt {L/C.} $$ The phase angle between V0 and Vi at $$\omega = 1/\sqrt {LC} $$ is
4
GATE ECE 1987
Fill in the Blanks
+2
-0
In Fig. if the CMRR of the operational amplifier is 60dB, then the magnitude of the output voltage is
Questions Asked from Operational Amplifier (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (2)
GATE ECE 2023 (2)
GATE ECE 2022 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (2)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (2)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 1 (2)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2008 (3)
GATE ECE 2007 (4)
GATE ECE 2006 (1)
GATE ECE 2005 (4)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE 2001 (3)
GATE ECE 2000 (1)
GATE ECE 1997 (1)
GATE ECE 1993 (1)
GATE ECE 1992 (3)
GATE ECE 1990 (3)
GATE ECE 1989 (1)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics