In the circuit shown below, the transistors $M_1$ and $M_2$ are biased in saturation. Their small signal transconductances are $g_{m1}$ and $g_{m2}$ respectively. Neglect body effect, channel length modulation and intrinsic device capacitances.
Assuming that capacitor $C_i$ is a short circuit for AC analysis, the exact magnitude of small signal voltage gain $\left| \frac{v_{out}}{v_{in}} \right|$ is ______.
An NMOS transistor operating in the linear region has $I_{D}$ of 5 $\mu$A at $V_{DS}$ of 0.1 V. Keeping $V_{GS}$ constant, the $V_{DS}$ is increased to 1.5 V.
Given that $\mu_{n}C_{ox} \frac{W}{L}$ = 50 $\mu$A/$V^2$, the transconductance at the new operating point (in $\mu$A/V, rounded off to two decimal places) is ______.
Consider an ideal long channel nMOSFET (enhancement-mode) with gate length 10 $$\mu$$m and width 100 $$\mu$$m. The product of electron mobility ($$\mu$$n) and oxide capacitance per unit area (Cox) is $$\mu$$nCox = 1 mA/V2. The threshold voltage of the transistor is 1 V. For a gate-to-source voltage VGS = [2 $$-$$ sin(2t)] V and drain-to source voltage VDS = 1 V (substrate connected to the source), the maximum value of the drain-to-source current is ___________.
Consider the circuit shown with an ideal long channel nMOSFET (enhancement mode, substrate is connected to the source). The transistor is appropriately biased in the saturation region with VGG and VDD such that it acts as a linear amplifier. vi is the small-signal ac input voltage. vA and vB represent the small-signal voltages at the nodes A and B, respectively. The value of $${{{v_A}} \over {{v_B}}}$$ is __________ (rounded off to one decimal place).