1
GATE ECE 2015 Set 1
Numerical
+2
-0
In the given circuit, the maximum power (in Watts) that can be transferred to the load RL is ___________________.
2
GATE ECE 2015 Set 1
+2
-0.6
The damping ratio of a series $$RLC$$ circuit can be expressed as
A
$${{{R^2}C} \over {2L}}$$
B
$${{2L} \over {{R^2}C}}$$
C
$${R \over 2}\sqrt {{C \over L}}$$
D
$${2 \over R}\sqrt {{L \over C}}$$
3
GATE ECE 2014 Set 4
+2
-0.6
The steady state output of the circuit shown in the figure is given by $$y\left( t \right) = {\rm A}\left( \omega \right)\sin \left( {\omega t + \phi \left( \omega \right)} \right)$$\$

If the amplitude $$\left| {{\rm A}\left( \omega \right)} \right| = 0.25$$, then the frequency $$\omega$$ is

A
$${1 \over {\sqrt 3 \,R\,C}}$$
B
$${2 \over {\sqrt 3 \,R\,C}}$$
C
$${1 \over {R\,C}}$$
D
$${2 \over {R\,C}}$$
4
GATE ECE 2014 Set 3
+2
-0.6
Consider the building block called 'Network N' shown in the figure.
Let $$C = 100\,\mu F\,\,$$ and $$R = 10\,k\Omega$$.

Two such blocks are connected in cascade, as shown in the figure.

The transfer function $${{{V_3}\left( s \right)} \over {{V_1}\left( s \right)}}$$ of the cascaded network is

A
$${s \over {1 + s}}$$
B
$${{{s^2}} \over {1 + 3s + {s^2}}}$$
C
$${\left( {{s \over {1 + s}}} \right)^2}$$
D
$${{s \over {2 + s}}}$$
EXAM MAP
Medical
NEET