1
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
For the circuit given in the figure, the voltage VC (in volts) across the capacitor is : GATE ECE 2018 Network Theory - Sinusoidal Steady State Response Question 4 English
A
1.25$$\sqrt 2 $$ sin(5t - 0.25$$\pi $$)
B
1.25$$\sqrt 2 $$ sin(5t - 0.125$$\pi $$)
C
2.5$$\sqrt 2 $$ sin(5t - 0.25$$\pi $$)
D
2.5$$\sqrt 2 $$ sin(5t - 0.125$$\pi $$)
2
GATE ECE 2017 Set 1
Numerical
+2
-0
In the circuit shown the voltage $${V_{IN}}\,\left( t \right)$$ is described by: $$${V_{IN}}\,\left( t \right) = \left\{ {\matrix{ {0,} & {for\,\,\,t < 0} \cr {15Volts,} & {for\,\,\,t \ge 0} \cr } } \right.$$$

where $$'t'$$ is in seconds. The time (in seconds) at which the current $${\rm I}$$ in the circuit will reach the value $$2$$ Ampere is ______ .

GATE ECE 2017 Set 1 Network Theory - Sinusoidal Steady State Response Question 18 English
Your input ____
3
GATE ECE 2017 Set 1
Numerical
+2
-0
The figure shows an RLC circuit excited by the sinusoidal voltage $$100cos(3t)$$ Volts, where $$t$$ is in seconds. The ratio $${{amplitude\,\,of\,\,{V_2}} \over {amplitude\,\,of\,\,{V_1}}}\,\,$$ is ________ . GATE ECE 2017 Set 1 Network Theory - Sinusoidal Steady State Response Question 17 English
Your input ____
4
GATE ECE 2016 Set 1
Numerical
+2
-0

An AC voltage source V = 10 sin(t) volts is applied to the following network. Assume that R1 = 3 kΩ, R2 = 6 kΩ and R3 = 9 kΩ and that the diode is ideal.

GATE ECE 2016 Set 1 Network Theory - Sinusoidal Steady State Response Question 49 English

RMS current Irms (in mA) through the diode is _________.

Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12