1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A network consisting of a finite number of linear resistor (R), inductor (L), and capacitor (C) elements, connected all in series or all in parallel, is excited with a source of the form
$$\sum\limits_{k = 1}^3 {{a_k}\,\,\cos \,\left( {k{\omega _0}t} \right),\,\,\,} $$ where $${a_k} \ne 0,\,\,{\omega _0} \ne 0$$.
$$\sum\limits_{k = 1}^3 {{a_k}\,\,\cos \,\left( {k{\omega _0}t} \right),\,\,\,} $$ where $${a_k} \ne 0,\,\,{\omega _0} \ne 0$$.
The source has nonzero impedance. Which one of the following is a possible form of the output measured across a resistor in the network?
2
GATE ECE 2016 Set 1
Numerical
+2
-0
An AC voltage source V = 10 sin(t) volts is applied to the following network. Assume that R1 = 3 kΩ, R2 = 6 kΩ and R3 = 9 kΩ and that the diode is ideal.
RMS current Irms (in mA) through the diode is _________.
Your input ____
3
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The damping ratio of a series $$RLC$$ circuit can be expressed as
4
GATE ECE 2015 Set 1
Numerical
+2
-0
In the given circuit, the maximum power (in Watts) that can be transferred to the load RL is ___________________.
Your input ____
Questions Asked from Sinusoidal Steady State Response (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2022 (2)
GATE ECE 2018 (1)
GATE ECE 2017 Set 1 (2)
GATE ECE 2016 Set 1 (2)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (3)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2007 (2)
GATE ECE 2005 (1)
GATE ECE 2004 (2)
GATE ECE 2003 (2)
GATE ECE 2002 (1)
GATE ECE 2001 (1)
GATE ECE 2000 (1)
GATE ECE 1993 (1)
GATE ECE 1992 (1)
GATE ECE 1991 (1)
GATE ECE 1990 (2)
GATE ECE 1989 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude