1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A causal system having the transfer function $$G\left(s\right)\;=\;\frac1{s\;+\;2}$$
is excited with 10u(t).
The time at which the output reaches 99% of its steady state value is
2
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
A second-order system has the transfer function $$\frac{C\left(s\right)}{R\left(s\right)}=\frac4{s^2+4s+4}$$. With r(t) as the unit-step function, the response c(t) of the system is represented
by
3
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a system is $$G\left(s\right)\;=\;\frac{100}{\left(s\;+\;1\right)\left(s\;+\;100\right)}$$.For a unit step input
to the system the approximate settling time for 2% criterion is
4
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
If the closed-loop transfer function T(s) of a unity negative feedback system is
given by $$$T\left(s\right)=\frac{a_{n-1}s+a_n}{s^n+a_1s^{n-1}+.....+a_{n-1}s+a_n}$$$ then the steady state error for a unit ramp input is
Questions Asked from Time Response Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2022 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 2 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2013 (1)
GATE ECE 2009 (1)
GATE ECE 2008 (2)
GATE ECE 2007 (2)
GATE ECE 2006 (2)
GATE ECE 2005 (2)
GATE ECE 2004 (2)
GATE ECE 2003 (1)
GATE ECE 2002 (1)
GATE ECE 1999 (1)
GATE ECE 1998 (1)
GATE ECE 1994 (2)
GATE ECE 1991 (2)
GATE ECE 1990 (1)
GATE ECE 1988 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics