1
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The output of a standard second–order system for a unit step input is given as $$$y\left(t\right)=1-\frac2{\sqrt3}e^{-t}\cos\left(\sqrt3t\;-\;\frac{\mathrm\pi}6\right)$$$ The transfer function of the system is
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The damping ratio of a series RLC circuit can be expressed as
3
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
For the following feedback system $$G\left(s\right)=\frac1{\left(s+1\right)\left(s+2\right)}$$.The 2% settling time of the step
response is required to be less than 2 seconds.
Which one of the following compensators C(s) achieves this?
4
GATE ECE 2014 Set 3
Numerical
+2
-0
The steady state error of the system shown in the figure for a unit step input is _______.
Your input ____
Questions Asked from Time Response Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2022 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 2 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2013 (1)
GATE ECE 2009 (1)
GATE ECE 2008 (2)
GATE ECE 2007 (2)
GATE ECE 2006 (2)
GATE ECE 2005 (2)
GATE ECE 2004 (2)
GATE ECE 2003 (1)
GATE ECE 2002 (1)
GATE ECE 1999 (1)
GATE ECE 1998 (1)
GATE ECE 1994 (2)
GATE ECE 1991 (2)
GATE ECE 1990 (1)
GATE ECE 1988 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics