1
IIT-JEE 1997
Subjective
+5
-0
Prove that $$\sum\limits_{k = 1}^{n - 1} {\left( {n - k} \right)\,\cos \,{{2k\pi } \over n} = - {n \over 2},}$$ where $$n \ge 3$$ is an integer.
2
IIT-JEE 1996
Subjective
+2
-0
Find all values of $$\theta$$ in the interval $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$ satisfying the equation $$\left( {1 - \tan \,\theta } \right)\left( {1 + \tan \,\theta } \right)\,\,{\sec ^2}\theta + \,\,{2^{{{\tan }^2}\theta }} = 0.$$
3
IIT-JEE 1995
Subjective
+5
-0
Find the smallest positive number $$p$$ for which the equation $$\cos \left( {p\,\sin x} \right) = \sin \left( {p\cos x} \right)$$ has a solution $$x\, \in \,\left[ {0,2\pi } \right]$$.
4
IIT-JEE 1993
Subjective
+5
-0
Determine the smallest positive value of number $$x$$ (in degrees) for which $$\tan \left( {x + {{100}^ \circ }} \right) = \tan \left( {x + {{50}^ \circ }} \right)\,\tan \left( x \right)\tan \left( {x - {{50}^ \circ }} \right).$$\$
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination