1
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function

$$\begin{array}{rlrl} f(x) & =3 a x+b, & & \text { for } x<1 \\ & =11, & & \text { for } x=1 \\ & =5 a x-2 b, & \text { for } x>1 \end{array}$$

is continuous at $$x=1$$. Then, the values of $$a$$ and $$b$$ are

A
$$\mathrm{a}=2, \mathrm{~b}=3$$
B
$$\mathrm{a=3, b=3}$$
C
$$\mathrm{a=2, b=2}$$
D
$$\mathrm{a}=3, \mathrm{~b}=2$$
2
MHT CET 2021 23rd September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { If the function given by} \mathrm{f}(\mathrm{x}) \\ & =-2 \sin \mathrm{x} \quad-\pi \leq \mathrm{x}<-(\pi / 2) \\ & =a \sin x+b \quad-(\pi / 2)< x<(\pi / 2) \\ & =\cos x \quad(\pi / 2) \leq x \leq \pi \\ \end{aligned}$$

is continuous in $$[-\pi, \pi]$$, then the value of $$(3 a+2 b)^3$$ is

A
1
B
8
C
$$-$$1
D
$$-$$8
3
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$$, for $$x \neq \pi$$ is continuous at $$x=\pi$$, then the value of $$f(\pi)$$ is

A
$$\frac{-1}{2}$$
B
$$-1$$
C
1
D
$$\frac{1}{2}$$
4
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]=$$

A
$$\frac{1}{2}$$
B
2
C
$$-2$$
D
$$-\frac{1}{2}$$
MHT CET Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12