1
MHT CET 2022 11th August Evening Shift
+2
-0

If $$\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{(x-1)}=5$$, then $$(a+b)$$ is equal to

A
$$-$$4
B
$$-$$7
C
7
D
$$-$$3
2
MHT CET 2021 24th September Evening Shift
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{1-\cos x^2}}{1-\cos x}=$$

A
$$\sqrt{2}$$
B
$$\frac{1}{\sqrt{2}}$$
C
0
D
$$\frac{1}{2}$$
3
MHT CET 2021 24th September Evening Shift
+2
-0

If $$\mathrm{f}(\mathrm{x})=\mathrm{x}, \quad$$ for $$\mathrm{x} \leq 0$$

$$=0,\quad$$ for $$x>0$$, then the function $$f(x)$$ at $$x=0$$ is

A
not continuous and not differentiable.
B
not continuous but differentiable.
C
continuous but not differentiable.
D
continuous and differentiable.
4
MHT CET 2021 24th September Morning Shift
+2
-0

$$\lim _\limits{x \rightarrow 1} \frac{a b^x-a^x b}{x^2-1}=$$

A
$$\frac{-a b}{2} \log \left(\frac{b}{a}\right)$$
B
$$\frac{\mathrm{ab}}{2} \log \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$$
C
ab $$\log \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$$
D
$$-\mathrm{ab} \log \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$$
EXAM MAP
Medical
NEET