1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

For a body performing simple harmonic motion, its potential energy is $\mathrm{E}_{\mathrm{x}}$ at displacement x and $\mathrm{E}_{\mathrm{y}}$ at displacement y from mean position. The potential energy $E_0$ at displacement $(x+y)$ is

A
$\sqrt{\mathrm{E}_{\mathrm{x}}^2+\mathrm{E}_{\mathrm{y}}^2}$
B
$\sqrt{E_x-E_y}$
C
  $E_x+E_y$
D
$E_x+E_y+2 \sqrt{E_x E_y}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The displacement of a particle performing S.H.M. is given by $Y=A \cos [\pi(t+\phi)]$. If at $\mathrm{t}=0$, the displacement is $\mathrm{y}=2 \mathrm{~cm}$ and velocity is $2 \pi \mathrm{~cm} / \mathrm{s}$, the value of amplitude $A$ in cm is

A
2
B
$\sqrt{2}$
C
$2 \sqrt{2}$
D
$\frac{1}{\sqrt{2}}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A particle is performing simple harmonic motion and if the oscillations are Camped oscillations then the angular frequency is given by

A
$\sqrt{\frac{k}{m}+\left(\frac{b}{2 m}\right)^2}$
B
$\frac{\mathrm{k}}{\mathrm{m}}+\left(\frac{\mathrm{b}}{2 \mathrm{~m}}\right)^2$
C
$\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^2}$
D
$\frac{\mathrm{k}}{\mathrm{m}}-\left(\frac{\mathrm{b}}{2 \mathrm{~m}}\right)^2$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Choose the correct answer. When a point of suspension of pendulum is moved vertically upward with acceleration ' $a$ ', its period of oscillation

A
decreases
B
increases
C
remains same
D
some times increases and some times decreases
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12