1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

For a body performing simple harmonic motion, its potential energy is $\mathrm{E}_{\mathrm{x}}$ at displacement x and $\mathrm{E}_{\mathrm{y}}$ at displacement y from mean position. The potential energy $E_0$ at displacement $(x+y)$ is

A
$\sqrt{\mathrm{E}_{\mathrm{x}}^2+\mathrm{E}_{\mathrm{y}}^2}$
B
$\sqrt{E_x-E_y}$
C
  $E_x+E_y$
D
$E_x+E_y+2 \sqrt{E_x E_y}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The displacement of a particle performing S.H.M. is given by $Y=A \cos [\pi(t+\phi)]$. If at $\mathrm{t}=0$, the displacement is $\mathrm{y}=2 \mathrm{~cm}$ and velocity is $2 \pi \mathrm{~cm} / \mathrm{s}$, the value of amplitude $A$ in cm is

A
2
B
$\sqrt{2}$
C
$2 \sqrt{2}$
D
$\frac{1}{\sqrt{2}}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A particle is performing simple harmonic motion and if the oscillations are Camped oscillations then the angular frequency is given by

A
$\sqrt{\frac{k}{m}+\left(\frac{b}{2 m}\right)^2}$
B
$\frac{\mathrm{k}}{\mathrm{m}}+\left(\frac{\mathrm{b}}{2 \mathrm{~m}}\right)^2$
C
$\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^2}$
D
$\frac{\mathrm{k}}{\mathrm{m}}-\left(\frac{\mathrm{b}}{2 \mathrm{~m}}\right)^2$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Choose the correct answer. When a point of suspension of pendulum is moved vertically upward with acceleration ' $a$ ', its period of oscillation

A
decreases
B
increases
C
remains same
D
some times increases and some times decreases
MHT CET Subjects
EXAM MAP