1
JEE Advanced 2023 Paper 2 Online
Numerical
+3
-0
Consider the $6 \times 6$ square in the figure. Let $A_1, A_2, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that $A_i$ and $A_j$ are friends if they are adjacent along a row or along a column. Assume that each point $A_i$ has an equal chance of being chosen.

Let $p_i$ be the probability that a randomly chosen point has $i$ many friends, $i=0,1,2,3,4$. Let $X$ be a random variable such that for $i=0,1,2,3,4$, the probability $P(X=i)=p_i$. Then the value of $7 E(X)$ is :
2
JEE Advanced 2023 Paper 2 Online
Numerical
+3
-0
Consider the $6 \times 6$ square in the figure. Let $A_1, A_2, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that $A_i$ and $A_j$ are friends if they are adjacent along a row or along a column. Assume that each point $A_i$ has an equal chance of being chosen.

Two distinct points are chosen randomly out of the points $A_1, A_2, \ldots, A_{49}$. Let $p$ be the probability that they are friends. Then the value of $7 p$ is :
3
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
In a study about a pandemic, data of 900 persons was collected. It was found that

190 persons had symptom of fever,

220 persons had symptom of cough,

220 persons had symptom of breathing problem,

330 persons had symptom of fever or cough or both,

350 persons had symptom of cough or breathing problem or both,

340 persons had symptom of fever or breathing problem or both,

30 persons had all three symptoms (fever, cough and breathing problem).

If a person is chosen randomly from these 900 persons, then the probability that the person has at most one symptom is ____________.
4
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
A number of chosen at random from the set {1, 2, 3, ....., 2000}. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7. Then the value of 500p is __________.