1
IIT-JEE 1989
MCQ (More than One Correct Answer)
+2
-0.5
Let a, b, c be real numbers, $$a \ne 0$$. If $$\alpha \,$$ is a root of $${a^2}{x^2} + bx + c = 0$$. $$\beta \,$$ is the root of $${a^2}{x^2} - bx - c = 0$$ and $$0 < \alpha \, < \,\beta$$, then the equation $${a^2}{x^2} + 2bx + 2c = 0$$ has a root $$\gamma$$ that always satisfies
A
$$\gamma = {{\alpha + \beta } \over 2}$$
B
$$\gamma = \alpha + {\beta \over 2}$$
C
$$\gamma = \alpha$$
D
$$\alpha < \gamma < \beta$$
2
IIT-JEE 1986
MCQ (More than One Correct Answer)
+2
-0.5
If $$S$$ is the set of all real $$x$$ such that $${{2x - 1} \over {2{x^3} + 3{x^2} + x}}$$ is positive, then $$S$$ contains
A
$$\left( { - \infty ,\, - {\textstyle{3 \over 2}}} \right)$$
B
$$\left( { - {3 \over 2},\, - {1 \over 4}} \right)$$
C
$$\left( { - {1 \over 4},\,{1 \over 2}} \right)$$
D
$$\left( {{1 \over 2},\,3} \right)\,\,\,\,$$
3
IIT-JEE 1984
MCQ (More than One Correct Answer)
+3
-0.75
For real $$x$$, the function $$\,{{\left( {x - a} \right)\left( {x - b} \right)} \over {x - c}}$$ will assume all real values provided
A
$$a > b > c$$
B
$$a < b < c$$
C
$$a > c > b$$
D
$$a < c < b$$
EXAM MAP
Medical
NEET