1
IIT-JEE 1987
Fill in the Blanks
+2
-0
If the vectors $$a\widehat i + \widehat j + \widehat k,\,\,\widehat i + b\widehat j + \widehat k$$ and $$\widehat i + \widehat j + c\widehat k$$
$$\left( {a \ne b \ne c \ne 1} \right)$$ are coplannar, then the value of $${1 \over {\left( {1 - a} \right)}} + {1 \over {\left( {1 - b} \right)}} + {1 \over {\left( {1 - c} \right)}} = ..........$$
2
IIT-JEE 1987
Fill in the Blanks
+2
-0
Let $$b = 4\widehat i + 3\widehat j$$ and $$\overrightarrow c$$ be two vectors perpendicular to each other in the $$xy$$-plane. All vectors in the same plane having projecttions $$1$$ and $$2$$ along $$\overrightarrow b$$ and $$\overrightarrow c,$$ respectively, are given by ...........
3
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and the vectors
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C}$$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} =$$ ................
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12