1
IIT-JEE 1996
Fill in the Blanks
+2
-0
If $$\overrightarrow b \,$$ and $$\overrightarrow c \,$$ are two non-collinear unit vectors and $$\overrightarrow a \,$$ is any vector, then $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow c + {{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)} \over {\left| {\overrightarrow b \times \overrightarrow c } \right|}}\left( {\overrightarrow b \times \overrightarrow c } \right) = $$ ..............
2
IIT-JEE 1994
Fill in the Blanks
+2
-0
A unit vector perpendicular to the plane determined by the points $$P\left( {1, - 1,2} \right)Q\left( {2,0, - 1} \right)$$ and $$R\left( {0,2,1} \right)$$ is ............
3
IIT-JEE 1992
Fill in the Blanks
+2
-0
A unit vector coplanar with $$\overrightarrow i + \overrightarrow j + 2\overrightarrow k $$ and $$\overrightarrow i + 2\overrightarrow j + \overrightarrow k $$ and perpendicular to $$\overrightarrow i + \overrightarrow j + \overrightarrow k $$ is ...........
4
IIT-JEE 1991
Fill in the Blanks
+2
-0
Given that $$\overrightarrow a = \left( {1,1,1} \right),\,\,\overrightarrow c = \left( {0,1, - 1} \right),\,\overrightarrow a .\overrightarrow b = 3$$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c ,$$ then $$\overrightarrow b \, = $$.........
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12