NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2018 Paper 2 Offline

Numerical
Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the X-axis, Y-axis and Z-axis, respectively, where O(0, 0, 0) is the origin. Let $$S\left( {{1 \over 2},{1 \over 2},{1 \over 2}} \right)$$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If p = SP, q = SQ, r = SR and t = ST, then the value of |(p $$ \times $$ q) $$ \times $$ (r $$ \times $$ t)| is ............
Your Input ________

Answer

Correct Answer is 0.5

Explanation

Here, P(1, 0, 0), Q(0, 1, 0), R(0, 0, 1), T = (1, 1, 1) and $$S\left( {{1 \over 2},{1 \over 2},{1 \over 2}} \right)$$.

Image

Now, $$\overrightarrow p = \overrightarrow {SP} = \overrightarrow {OP} - \overrightarrow {OS} $$

$$ = \left( {{1 \over 2}\widehat i - {1 \over 2}\widehat j - {1 \over 2}\widehat k} \right) = {1 \over 2}(\widehat i - \widehat j - \widehat k)$$

$$\overrightarrow q = \overrightarrow {SQ} = {1 \over 2}( - \widehat i + \widehat j - \widehat k)$$

$$\overrightarrow r = \overrightarrow {SR} = {1 \over 2}( - \widehat i - \widehat j + \widehat k)$$

and $$\overrightarrow t = \overrightarrow {ST} = {1 \over 2}(\widehat i + \widehat j + \widehat k)$$

$$\overrightarrow p \times \overrightarrow q = {1 \over 4}\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 1 & { - 1} & { - 1} \cr { - 1} & 1 & { - 1} \cr } } \right| = {1 \over 4}(2\widehat i + 2\widehat j)$$

and $$\overrightarrow r \, \times \,\overrightarrow t = {1 \over 4}\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr { - 1} & { - 1} & 1 \cr 1 & 1 & 1 \cr } } \right| = {1 \over 4}( - 2\widehat i + 2\widehat j)$$

Now, $$(\overrightarrow p \, \times \,\overrightarrow q )\, \times \,(\overrightarrow r \, \times \,\overrightarrow t ) = {1 \over {16}}\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 2 & 2 & 0 \cr { - 2} & 2 & 0 \cr } } \right| = {1 \over {16}}(8\widehat k) = {1 \over 2}\widehat k$$

$$ \therefore $$ $$|(p \times q) \times (\overrightarrow r \, \times \,\overrightarrow t )|\, = \,\left| {{1 \over 2}\widehat k} \right| = {1 \over 2} = 0.5$$
2

JEE Advanced 2018 Paper 2 Offline

Numerical
Let f : R $$ \to $$ R be a differentiable function with f(0) = 1 and satisfying the equation f(x + y) = f(x) f'(y) + f'(x) f(y) for all x, y$$ \in $$ R.

Then, the value of loge(f(4)) is ...........
Your Input ________

Answer

Correct Answer is 2

Explanation

Given,

$$f(x + y) = f(x)f'(y) + f'(x)f(y),\,\forall x,y \in R$$ and f(0) = 1

Put x = y = 0, we get

f(0) = f(0) f'(0) + f'(0) f(0)

$$ \Rightarrow 1 = 2f'(0) \Rightarrow f'(0) = {1 \over 2}$$

Put x = x and y = 0, we get

f(x) = f(x) f'(0) + f'(x) f(0)

$$ \Rightarrow f(x) = {1 \over 2}f(x) + f'(x)$$

$$ \Rightarrow f'(x) = {1 \over 2}f(x) \Rightarrow {{f'(x)} \over {f(x)}} = {1 \over 2}$$

On integrating, we get

$$\log f(x) = {1 \over 2}x + C$$

$$ \Rightarrow f(x) = A{e^{{1 \over 2}x}}$$, where eC = A

If f(0) = 1, then A = 1

Hence, $$f(x) = {e^{{1 \over 2}x}}$$

$$ \Rightarrow {\log _e}f(x) = {1 \over 2}x$$

$$ \Rightarrow {\log _e}f(4) = {1 \over 2} \times 4 = 2$$
3

JEE Advanced 2015 Paper 1 Offline

Numerical
The number of distinct solutions of the equation $$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$$ in the interval $$\left[ {0,\,2\pi } \right]$$ is
Your Input ________

Answer

Correct Answer is 8
4

IIT-JEE 2011 Paper 1 Offline

Numerical
The positive integer value of $$n\, > \,3$$ satisfying the equation $${1 \over {\sin \left( {{\pi \over n}} \right)}} = {1 \over {\sin \left( {{{2\pi } \over n}} \right)}} + {1 \over {\sin \left( {{{3\pi } \over n}} \right)}}$$ is
Your Input ________

Answer

Correct Answer is 7

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12