1
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Change Language
Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the X-axis, Y-axis and Z-axis, respectively, where O(0, 0, 0) is the origin. Let $$S\left( {{1 \over 2},{1 \over 2},{1 \over 2}} \right)$$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If p = SP, q = SQ, r = SR and t = ST, then the value of |(p $$ \times $$ q) $$ \times $$ (r $$ \times $$ t)| is ............
Your input ____
2
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
The number of distinct solutions of the equation

$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$

in the interval $$\left[ {0,\,2\pi } \right]$$ is
Your input ____
3
IIT-JEE 2011 Paper 1 Offline
Numerical
+4
-0
The positive integer value of $$n\, > \,3$$ satisfying the equation $${1 \over {\sin \left( {{\pi \over n}} \right)}} = {1 \over {\sin \left( {{{2\pi } \over n}} \right)}} + {1 \over {\sin \left( {{{3\pi } \over n}} \right)}}$$ is
Your input ____
4
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
The number of all possible values of $$\theta $$ where $$0 < \theta < \pi ,$$ for which the system of equations $$$\left( {y + z} \right)\cos {\mkern 1mu} 3\theta = \left( {xyz} \right){\mkern 1mu} \sin 3\theta $$$ $$$x\sin 3\theta = {{2\cos 3\theta } \over y} + {{2\sin 3\theta } \over z}$$$ $$$\left( {xyz} \right){\mkern 1mu} \sin 3\theta = \left( {y + 2z} \right){\mkern 1mu} \cos 3\theta + y{\mkern 1mu} sin3\theta $$$

have a solution $$\left( {{x_0},{y_0},{z_0}} \right)$$ with $${y_0}{z_0}{\mkern 1mu} \ne {\mkern 1mu} 0,$$ is

Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12