1
GATE ECE 2004
+2
-0.6
The transfer function $$H\left( s \right) = {{{V_0}\left( s \right)} \over {{V_i}\left( s \right)}}$$ of an R-L-C circuit is given by
$$H\left( s \right) = {{{{10}^6}} \over {{s^2} + 20s + {{10}^6}}}$$

The Quality factor (Q-factore) of this circuit is

A
$$25$$
B
$$50$$
C
$$100$$
D
$$5000$$
2
GATE ECE 2003
+2
-0.6
The current flowing through the resistance R in the circuit in figure has the form P cos 4t, where P is
A
(0.18 + j 0.72)
B
(0.46 + j 1.90)
C
-(0.18 + j 1.90)
D
-(0.192 + j 0.144)
3
GATE ECE 2003
+2
-0.6
An input voltage $$v(t)$$ $$= 10\sqrt 2 \,\,\cos \,\,\left( {t + {{10}^0}} \right) + 10\sqrt 5 \,\,\cos \left( {2t + {{10}^0}} \right)\,\,V$$ is applied to a series combination of resistance $$L = 1H$$. the resulting steady - state current $$i(t)$$ in ampere is
A
$$10\cos \left( {t + {{55}^0}} \right) + 10\,\cos \left( {2t + {{10}^0} + {{\tan }^{ - 1}}\,2} \right)$$
B
$$10\cos \left( {t + {{55}^0}} \right) + 10\sqrt {{3 \over 2}} \,\cos \left( {2t + {{55}^0}} \right)$$
C
$$10\cos \left( {t - {{35}^0}} \right) + 10\cos \left( {2t + {{10}^0} - {{\tan }^{ - 1}}\,2} \right)$$
D
$$10\cos \left( {t - {{35}^0}} \right) + 10\sqrt {{3 \over 2}} \,\cos \left( {2t - {{35}^0}} \right)$$
4
GATE ECE 2002
+2
-0.6
If the 3-phase balanced source in Fig. delivers 1500 W at a leading power factor of 0.844, then the value of ZL (in ohm) is approximately
A
$$90\angle32.44^\circ$$
B
$$80\angle32.44^\circ$$
C
$$80\angle-32.44^\circ$$
D
$$90\angle-32.44^\circ$$
EXAM MAP
Medical
NEET