1
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The time domain behavior of an RL circuit is represented by $$\mathrm L\frac{\mathrm{di}\left(\mathrm t\right)}{\mathrm{dt}}+\mathrm{Ri}\;=\;{\mathrm V}_0\left(1\;+\;\mathrm{Be}^{-\mathrm{Rt}/\mathrm L}\;\sin\;\mathrm t\right)\mathrm u\left(\mathrm t\right)$$\$ For an initial current of i(0) = $$\frac{{\mathrm V}_0}{\mathrm R}$$, the steady state value of the current is given by
A
$$\mathrm i\left(\mathrm t\right)\rightarrow\frac{{\mathrm V}_0}{\mathrm R}$$
B
$$\mathrm i\left(\mathrm t\right)\rightarrow\frac{2{\mathrm V}_0}{\mathrm R}$$
C
$$\mathrm i\left(\mathrm t\right)\rightarrow\frac{{\mathrm V}_0}{\mathrm R}\left(1+\mathrm B\right)$$
D
$$\mathrm i\left(\mathrm t\right)\rightarrow\frac{2{\mathrm V}_0}{\mathrm R}\left(1+\mathrm B\right)$$
2
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The switch in the circuit shown was on position ‘a’ for a long time and is moved to position ‘b’ at time t = 0. The current i(t) for t > 0 is given by
A
0.2e-125t u(t) mA
B
20e-1250t u(t) mA
C
0.2e-1250t u(t) mA
D
20e-1000t u(t) mA
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The following series RLC circuit with zero initial conditions is excited by a unit impulse function $$\delta$$(t). For t > 0, the output voltage Vc(t) is
A
$$\frac2{\sqrt3}\left(e^{-\frac{\displaystyle1}{\displaystyle2}t}-e^{-\frac{\displaystyle\sqrt3}{\displaystyle2}t}\right)$$
B
$$\frac2{\sqrt3}te^{-\frac12t}$$
C
$$\frac2{\sqrt3}e^{-\frac12t}\cos\left(\frac{\sqrt3}2t\right)$$
D
$$\frac2{\sqrt3}e^{-\frac12t}\sin\left(\frac{\sqrt3}2t\right)$$
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The following series RLC circuit with zero initial conditions is excited by a unit impulse function $$\delta$$(t). For t > 0, the voltage across the resistor is
A
$$\frac1{\sqrt3}\left(e^{-\frac{\displaystyle\sqrt3}{\displaystyle2}t}-\;e^{-\frac12t}\right)$$
B
$$e^{-\frac12t}\left[\cos\left(\frac{\sqrt3}2t\right)\;-\;\frac1{\sqrt3}\sin\left(\frac{\sqrt3}2t\right)\right]$$
C
$$\frac2{\sqrt3}e^{-\frac{\displaystyle1}{\displaystyle2}t}\sin\left(\frac{\sqrt{3t}}2\right)$$
D
$$\frac2{\sqrt3}e^{-\frac{\displaystyle1}{\displaystyle2}t}\cos\left(\frac{\sqrt{3t}}2\right)$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12