1
GATE ECE 2016 Set 3
+1
-0.3
The block diagram of a feedback control system is shown in the figure. The overall closed-loop gain G of the system is A
$$G=\frac{G_1G_2}{1 + G_1H_1}$$
B
$$G=\frac{G_1G_2}{1\;+\;G_1G_2+\;G_1H_1}$$
C
$$G=\frac{G_1G_2}{1\;+\;G_1G_2H_1}$$
D
$$G=\frac{G_1G_2}{1\;+\;G_1G_2\;+\;G_1G_2H_1}$$
2
GATE ECE 2015 Set 2
+1
-0.3
By performing cascading and/or summing/differencing operations using transfer function blocks G1(s) and G2(s), one CANNOT realize a transfer function of the form
A
G1(s)G2(s)
B
$$\frac{G_1\left(s\right)}{G_2\left(s\right)}$$
C
$$G_1\left(s\right)\left(\frac1{G_1s}+G_2(s)\right)$$
D
$$G_1\left(s\right)\left(\frac1{G_1s}-G_2(s)\right)$$
3
GATE ECE 2015 Set 2
+1
-0.3
For the signal flow graph shown in the figure, the value of $$\frac{\mathrm C\left(\mathrm s\right)}{\mathrm R\left(\mathrm s\right)}$$ is A B C D 4
GATE ECE 2014 Set 3
+1
-0.3
Consider the following block diagram in the figure. The transfer function $$\frac{\mathrm C\left(\mathrm s\right)}{\mathrm R\left(\mathrm s\right)}$$ is
A
$$\frac{G_1G_2}{1+G_1G_2}$$
B
$$G_1G_2\;+\;G_1\;+\;1$$
C
$$G_1G_2\;+\;G_2\;+\;1$$
D
$$\frac{G_1}{1+G_1G_2}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination