1
GATE ECE 2015 Set 2
+1
-0.3
By performing cascading and/or summing/differencing operations using transfer function blocks G1(s) and G2(s), one CANNOT realize a transfer function of the form
A
G1(s)G2(s)
B
$$\frac{G_1\left(s\right)}{G_2\left(s\right)}$$
C
$$G_1\left(s\right)\left(\frac1{G_1s}+G_2(s)\right)$$
D
$$G_1\left(s\right)\left(\frac1{G_1s}-G_2(s)\right)$$
2
GATE ECE 2015 Set 2
+1
-0.3
For the signal flow graph shown in the figure, the value of $$\frac{\mathrm C\left(\mathrm s\right)}{\mathrm R\left(\mathrm s\right)}$$ is A B C D 3
GATE ECE 2014 Set 3
+1
-0.3
Consider the following block diagram in the figure. The transfer function $$\frac{\mathrm C\left(\mathrm s\right)}{\mathrm R\left(\mathrm s\right)}$$ is
A
$$\frac{G_1G_2}{1+G_1G_2}$$
B
$$G_1G_2\;+\;G_1\;+\;1$$
C
$$G_1G_2\;+\;G_2\;+\;1$$
D
$$\frac{G_1}{1+G_1G_2}$$
4
GATE ECE 2014 Set 2
+1
-0.3
For the following system, When X1(s) = 0 , the transfer function $$\frac{\mathrm Y\left(\mathrm s\right)}{{\mathrm X}_2\left(\mathrm s\right)}$$ is
A
$$\frac{\mathrm s+1}{\mathrm s^2}$$
B
$$\frac1{\mathrm s+1}$$
C
$$\frac{\mathrm s+2}{\mathrm s\left(\mathrm s+1\right)}$$
D
$$\frac{\mathrm s+1}{\mathrm s\left(\mathrm s+2\right)}$$
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination