1
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
For any positive integer n, define

$${f_n}:(0,\infty ) \to R$$ as

$${f_n} = \sum\limits_{j = 1}^n {{{\tan }^{ - 1}}} \left( {{1 \over {1 + (x + j)(x + j - 1)}}} \right)$$

for all x$$ \in $$(0, $$\infty $$). (Here, the inverse trigonometric function tan$$-$$1 x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$). Then, which of the following statement(s) is (are) TRUE?
A
$$\sum\limits_{j = 1}^5 {{{\tan }^2}({f_j}(0)) = 55} $$
B
$$\sum\limits_{j = 1}^{10} {(1 + f{'_j}(0)){{\sec }^2}({f_j}(0)) = 10} $$
C
For any fixed positive integer n, $$\mathop {\lim }\limits_{x \to \infty } \tan ({f_n}(x)) = {1 \over n}$$
D
For any fixed positive integer n, $$\mathop {\lim }\limits_{x \to \infty } {\sec ^2}({f_n}(x)) = 1$$
2
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let T be the line passing through the points P($$-$$2, 7) and Q(2, $$-$$5). Let F1 be the set of al pairs of circles (S1, S2) such that T is tangent to S1 at P and tangent to S2 at Q, and also such that S1 and S2 touch each other at a point, say M. Let E1 be the set representing the locus of M as the pair (S1, S2) varies in F1. Let the set of all straight line segments joining a pair of distinct points of E1 and passing through the point R(1, 1) be F2. Let E2 be the set of the mid-points of the line segments in the set F2. Then, which of the following statement(s) is (are) TRUE?
A
The point ($$-$$2, 7) lies in E1
B
The point $$\left( {{4 \over 5},{7 \over 5}} \right)$$ does not lie in E2
C
The point $$\left( {{1 \over 2},1} \right)$$ lies in E2
D
The point $$\left( {0,{3 \over 2}} \right)$$ does not lie in E1
3
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let S be the set of all column matrices $$\left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr {{b_3}} \cr } } \right]$$ such that $${b_1},{b_2},{b_3} \in R$$ and the system of equations (in real variables)

$$\eqalign{ & - x + 2y + 5z = {b_1} \cr & 2x - 4y + 3z = {b_2} \cr & x - 2y + 2z = {b_3} \cr} $$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each $$\left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr {{b_3}} \cr } } \right]$$$$ \in $$S?
A
$$x + 2y + 3z = {b_1}$$, $$\,4y + 5z = {b_2}$$ and $$x + 2y + 6z = {b_3}$$
B
$$x + y + 3z = {b_1}$$, $$5x + 2y + 6z = {b_2}$$ and $$ - 2x - y - 3z = {b_3}$$
C
$$ - x + 2y - 5z = {b_1}$$, $$\,2x - 4y + 10z = {b_2}$$ and $$x - 2y + 5z = {b_3}$$
D
$$x + 2y + 5z = {b_1}$$, $$2x + 3z = {b_2}$$ and $$x + 4y - 5z = {b_3}$$
4
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Consider two straight lines, each of which is tangent to both the circle x2 + y2 = (1/2) and the parabola y2 = 4x. Let these lines intersect at the point Q. Consider the ellipse whose centre is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $$\sqrt 2 $$, then which of the following statement(s) is (are) TRUE?
A
For the ellipse, the eccentricity is 1$$\sqrt 2 $$ and the length of the latus rectum is 1
B
For the ellipse, the eccentricity is 1/2 and the length of the latus rectum is 1/2
C
The area of the region bounded by the ellipse between the lines $$x = {1 \over {\sqrt 2 }}$$ and x = 1 is $${1 \over {4\sqrt 2 }}(\pi - 2)$$
D
The area of the region bounded by the ellipse between the lines $$x = {1 \over {\sqrt 2 }}$$ and x = 1 is $${1 \over {16}}(\pi - 2)$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12