1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation, whose solution is $y=\left(C_1+C_2\right) \mathrm{e}^x+C_3 \mathrm{e}^{x+C_4}$, is

A
4
B
1
C
3
D
2
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^x+e^{-x}}$ is

A
$y=\mathrm{e}^{-3 x}+\mathrm{c}$, where c is a constant of integration.
B
$y=\mathrm{e}^x+\mathrm{c}$, where c is a constant of integration.
C
$y=\mathrm{e}^{3 x}+\mathrm{c}$, where c is a constant of integration.
D
$y=\mathrm{e}^{-x}+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation, having general solution as $A x^2+B y^2=1$, where $A$ and $B$ are arbitrary constants, is

A
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
C
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
D
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A radio active substance has half-life of $h$ days, then its initial decay rate is given by Note that at $\mathrm{t}=0, \mathrm{M}=\mathrm{m}_{\mathrm{o}}$

A
$\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{h}}(\log 2)$
B
$\left(\mathrm{m}_{\mathrm{o}} \mathrm{h}\right)(\log 2)$
C
$-\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{h}}(\log 2)$
D
$\left(-\mathrm{m}_{\mathrm{o}} \mathrm{h}\right)(\log 2)$
MHT CET Subjects
EXAM MAP