1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{3 x^2}{1+x^3}\right) y=\frac{1}{x^3+1}$$ is

A
$$y\left(1+x^3\right)=x^3+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$y\left(1+x^3\right)=x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$y\left(1+x^3\right)=x^2+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$y\left(1+x^3\right)=2 x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles, passing through the origin and having their centres on the $$\mathrm{X}$$-axis, is

A
$$y^2=x^2+x y \frac{\mathrm{d} y}{\mathrm{~d} x}$$
B
$$x^2=y^2+2 x y \frac{\mathrm{d} y}{\mathrm{~d} x}$$
C
$$y^2=x^2+2 x y \frac{\mathrm{d} y}{\mathrm{~d} x}$$
D
$$x^2=y^2-x y \frac{\mathrm{d} y}{\mathrm{~d} x}$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The population $$\mathrm{P}=\mathrm{P}(\mathrm{t})$$ at time $$\mathrm{t}$$ of certain species follows the differential equation $$\frac{d P}{d t}=0.5 P-450$$. If $$P(0)=850$$, then the time at which population becomes zero is

A
$$2 \log 18$$
B
$$\log 9$$
C
$$\frac{1}{2} \log 18$$
D
$$\log 18$$
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-y^2}}{y}$$ determines a family of circles with

A
variable radii and fixed centre at $$(0,1)$$.
B
variable radii and fixed centre at $$(0,-1)$$.
C
fixed radius of 1 unit and variable centre along the $$\mathrm{Y}$$-axis.
D
fixed radius of 1 unit and variable centre along the $$\mathrm{X}$$-axis.
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12