1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-y)^2$ when $y(1)=1$ is

A
$\log \left|\frac{2-y}{2-x}\right|=2(y-1)$
B
$-\log \left|\frac{1+x-y}{1-x+y}\right|=x+y-2$
C
$\log \left|\frac{2-x}{2-y}\right|=x-y$
D
$-\log \left|\frac{1-+xy}{1+x-y}\right|=2(x-1)$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y(\log y-\log x+1)$, then general solution of this equation is

A
$\log \left(\frac{x}{y}\right)=\mathrm{cy}$, where c is a constant of integration.
B
$\log \left(\frac{x}{y}\right)=\mathrm{c} x$, where c is a constant of integration.
C
$\log \left(\frac{y}{x}\right)=\mathrm{cy}$, where c is a constant of integration.
D
$\log \left(\frac{y}{x}\right)=c x$, where $c$ is a constant of integration.
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A spherical metal ball at 80$^\circ$C cools in 5 minutes to 60$^\circ$C, in surrounding temperature of 20$^\circ$C, then the temperature of the ball after 20 minutes is approximately

A
(8.15)$^\circ$C
B
(11.85)$^\circ$C
C
(28.15)$^\circ$C
D
(31.85)$^\circ$C
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the slope of the tangent of the curve at any point is equal to $$-y+\mathrm{e}^{-x}$$, then the equation of the curve passing through origin is

A
$$y+x \mathrm{e}^x=0$$
B
$$y \mathrm{e}^x+x=0$$
C
$$y \mathrm{e}^x-x=0$$
D
$$y-x \mathrm{e}^x=0$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12