1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The rate at which the population of a city increases varies as the population. In a period of 20 years, the population increased from 4 lakhs to 6 lakhs. In another 20 years the population will be

A
8 lakhs
B
12 lakhs
C
9 lakhs
D
10 lakhs
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 y$ represents ________

A
a family of circles with radius c .
B
a family of parabolas with vertex at the origin and axis along the positive Y -axis
C
a family of parabolas with vertex at origin and axis along the positive X -axis
D
a family of ellipses
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the equation $x^2 y-x^3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^4 \cos x$, where $y(0)=1$, is

A
$y^3=3 x^2 \sin x$
B
$x^3=3 y^3 \sin x$
C
$x^3=y^3 \sin x$
D
$y^3=4 x^3 \sin x$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$y=\mathrm{e}^x(\mathrm{~A} \cos x+\mathrm{B} \sin x)$ is the solution of the differential equation

A
$x^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+\left(1+y^2\right)=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-\frac{\mathrm{d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$
D
$x \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$
MHT CET Subjects
EXAM MAP