1
MHT CET 2021 20th September Morning Shift
+2
-0

A differential equation for the temperature 'T' of a hot body as a function of time, when it is placed in a bath which is held at a constant temperature of 32$$^\circ$$ F, is given by (where k is a constant of proportionality)

A
$$\mathrm{\frac{dT}{dt}=kT-32}$$
B
$$\mathrm{\frac{dT}{dt}=kT+32}$$
C
$$\mathrm{\frac{dT}{dt}=-k(T-32)}$$
D
$$\mathrm{\frac{dT}{dt}=32kT}$$
2
MHT CET 2021 20th September Morning Shift
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$$ is given by

A
$$y=x \log (x+y)+c$$
B
$$x-y=\log (x+y)+c$$
C
$$x+y=\log (x+y)+c$$
D
$$y=x+\log (x+y)+c$$
3
MHT CET 2021 20th September Morning Shift
+2
-0

The general solution of the differential equation $$x+y \frac{d y}{d x}=\sec \left(x^2+y^2\right)$$ is

A
$$\sin \left(x^2+y^2\right)=2 x+c$$
B
$$\sin \left(x^2+y^2\right)+2 x=c$$
C
$$\sin \left(x^2+y^2\right)+x=c$$
D
$$\cos \left(x^2+y^2\right)=2 x+c$$
4
MHT CET 2021 20th September Morning Shift
+2
-0

The differential equation of all circles which pass through the origin and whose centre lie on Y-axis is

A
$$\left(x^2-y^2\right) \frac{d y}{d x}-2 x y=0$$
B
$$\left(x^2+y^2\right) \frac{d y}{d x}-2 x y=0$$
C
$$\left(x^2+y^2\right) \frac{d y}{d x}+2 x y=0$$
D
$$\left(x^2-y^2\right) \frac{d y}{d x}+2 x y=0$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination