1
MHT CET 2021 23rd September Evening Shift
MCQ (Single Correct Answer)
+2
-0

Radium decomposes at the rate proportional to the amount present at any time. If $$\mathrm{P} \%$$ of amount disappears in one year, then amount of radium left after 2 years is

A
$$\left(10-\frac{\mathrm{P}}{10}\right)^2$$
B
$$\mathrm{x}_0\left[1+\frac{\mathrm{P}}{100}\right]^2$$
C
$$x_0\left[1-\frac{P}{100}\right]^2$$
D
$$\mathrm{x}_0\left[10-\frac{\mathrm{P}}{10}\right]^2$$
2
MHT CET 2021 23rd September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained by eliminating A and B from $$y=A \cos \omega t+B \sin \omega t$$

A
$$\frac{d^2 y}{d t^2}+\omega^2 y=0$$
B
$$\frac{\mathrm{d}^2 y}{\mathrm{dt}^2}+\omega \mathrm{y}^2=0$$
C
$$\frac{d^2 y}{d t^2}-\omega^2 y=0$$
D
$$\frac{d^2 y}{d t^2}-\omega y^2=0$$
3
MHT CET 2021 23rd September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$y(1+\log x) \frac{d x}{d y}-x \log x=0$$ when $$x=e, y=e^2$$ is

A
$$y^2=e^4 \log x$$
B
$$y=e^2 \log x$$
C
$$y=x^2 \log x$$
D
$$y=e x \log x$$
4
MHT CET 2021 23rd September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order and degree of the differential equation $$\frac{d^2 y}{d x^2}=\sqrt{\frac{d y}{d x}}$$ are respectively

A
2, 3
B
3, 3
C
2, 2
D
1, 3
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12