An ice ball melts at the rate which is proportional to the amount of ice at that instant. Half of the quantity of ice melts in 15 minutes. $x_0$ is the initial quantity of ice. If after 30 minutes the amount of ice left is $\mathrm{kx}_0$, then the value of $k$ is
Let $y=y(x)$ be the solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \log x,(x>1)$ If $2(y(2))=\log 4-1$ then the value of $y(\mathrm{e})$ is
If $y(x)$ is the solution of the differential equation $(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^2+4 x-9, x \neq-2$ and $y(0)=0$, then $y(-4)$ is equal to
The bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 8 hours, then the number of bacteria in 24 hours will be