1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the diffrential equation $$y(1+\log x)=\left(\log x^x\right) \frac{d y}{d x}$$, when $$y(e)=e^2$$ is

A
$$2 e x \log x-y=e^2$$
B
$$3 ex \log y x-y=2 e^2$$
C
$$\operatorname{ex} \log x+y=2 e^2$$
D
$$\operatorname{ex} \log x-y=0$$
2
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $$\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y$$ is

A
$$\tan (x+y)-\sec (x+y)=x^2+c$$
B
$$\tan (x+y)+\sec (x+y)=x^2+c$$
C
$$\tan (x+y)+\sec (x+y)=x+c$$
D
$$\tan (x+y)-\sec (x+y)=x+c$$
3
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

Solution of the differential equation $$\mathrm{y'=\frac{(x^2+y^2)}{xy}}$$, where y(1) = $$-$$2 is given by

A
$$y^2=4 x^2 \log x^2+x^2$$
B
$$y^2=x^2 \log x-x^2$$
C
$$y^2=x \log x^2+4 x^2$$
D
$$\mathrm{y}^2=\mathrm{x}^2 \log \mathrm{x}^2+4 \mathrm{x}^2$$
4
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all family of lines $$y=m x+\frac{4}{m}$$ obtained by eliminating the arbitrary constant $$\mathrm{m}$$ is

A
$$y\left(\frac{d y}{d x}\right)=4$$
B
$$x\left(\frac{d y}{d x}\right)^2+y\left(\frac{d y}{d x}\right)+4=0$$
C
$$x\left(\frac{d y}{d x}\right)+4=0$$
D
$$x\left(\frac{d y}{d x}\right)^2-y\left(\frac{d y}{d x}\right)+4=0$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12