1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of $y=\mathrm{e}^x\left(\mathrm{a}+\mathrm{bx}+x^2\right)$ is

A
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \mathrm{e}^x+y=0$
D
$\frac{\mathrm{d}^2 y}{\mathrm{dx}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\mathrm{e}^x+2 y=0$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An ice ball melts at the rate which is proportional to the amount of ice at that instant. Half of the quantity of ice melts in 15 minutes. $x_0$ is the initial quantity of ice. If after 30 minutes the amount of ice left is $\mathrm{kx}_0$, then the value of $k$ is

A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{4}$
D
$\frac{1}{8}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \log x,(x>1)$ If $2(y(2))=\log 4-1$ then the value of $y(\mathrm{e})$ is

A
$\frac{\mathrm{e}^2}{4}$
B
$\frac{-\mathrm{e}^2}{2}$
C
$\frac{-\mathrm{e}}{2}$
D
$\frac{\mathrm{e}}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y(x)$ is the solution of the differential equation $(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^2+4 x-9, x \neq-2$ and $y(0)=0$, then $y(-4)$ is equal to

A
0
B
1
C
$-$1
D
2
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12