1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \cos x=4 x, x \in(0, \pi)$. If $y\left(\frac{\pi}{2}\right)=0$, then $y\left(\frac{\pi}{6}\right)$ is equal to

A
$-\frac{4}{9} \pi^2$
B
$\frac{4}{9 \sqrt{3}} \pi^2$
C
$\frac{-8}{9 \sqrt{3}} \pi^2$
D
$-\frac{8}{9} \pi^2$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Given that the slope of the tangent to a curve $y=y(x)$ at any point $(x, y)$ is $\frac{2 y}{x^2}$. If the curve passes through the centre of the circle $x^2+y^2-2 x-2 y=0$, then its equation is

A
$x \log |y|=x-1$
B
$x \log |y|=-2(x-1)$
C
$x \log |y|=2(x-1)$
D
$x^2 \log |y|=-2(x-1)$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the open air loses half its moisture during the first hour, then the time t , in which $99 \%$ of the moisture will be lost, is

A
$\frac{2 \log 10}{\log 2}$
B
$\frac{\log 10}{\log 2}$
C
$\frac{3 \log 10}{\log 2}$
D
$\frac{1}{2} \frac{\log 10}{\log 2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $x \cos y \mathrm{~d} y=\left(x \mathrm{e}^{\mathrm{x}} \log x+\mathrm{e}^x\right) \mathrm{d} x$ is given by

A
$\sin y=\mathrm{e}^x+\operatorname{clog} x$, where c is a constant of integration.
B
$\sin y=\mathrm{e}^{\mathrm{x}} \log x+\mathrm{c}$, where c is a constant of integration.
C
$\mathrm{e}^x \sin y=\log x+\mathrm{c}$, where c is a constant of integration.
D
$\sin y=\mathrm{ce}^x+\log x$, where c is a constant of integration.
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12