1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)}$$ is

A
$$\frac{\mathrm{e}^y}{y}=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\mathrm{e}^y \log y=\mathrm{e}^x \cos x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\mathrm{e}^y y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Water flows from the base of rectangular tank, of depth 16 meters. The rate of flow of the water is proportional to the square root of depth at any time $$\mathrm{t}$$. If depth is $$4 \mathrm{~m}$$ when $$\mathrm{t}=2$$ hours, then after 3.5 hours the depth (in meters) is

A
0
B
0.25
C
0.5
D
3
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$(2+\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+1) \cos x=0$$ and $$y(0)=1$$, then $$y\left(\frac{\pi}{2}\right)$$ is

A
$$\frac{-2}{3}$$
B
$$\frac{-1}{3}$$
C
$$\frac{4}{3}$$
D
$$\frac{1}{3}$$
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The decay rate of radio active material at any time $$t$$ is proportional to its mass at that time. The mass is 27 grams when $$t=0$$. After three hours it was found that 8 grams are left. Then the substance left after one more hour is

A
$$\frac{27}{8}$$ grams
B
$$\frac{81}{4}$$ grams
C
$$\frac{16}{3}$$ grams
D
$$\frac{16}{9}$$ grams
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12