1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

General solution of the differential equation $$\log \left(\frac{d y}{d x}\right)=a x+b y$$ is

A
$$a e^{b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
B
$$a e^{-b y}+b^{-a x}=c_1$$, where $$c_1$$ is a constant.
C
$$a e^{-b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
D
$$a e^{b y}+b e^{-a x}=c_1$$, where $$c_1$$ is a constant.
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles which pass through the origin and whose centres lie on $$\mathrm{Y}$$-axis is

A
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=0$$
B
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$$
C
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0$$
D
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=0$$
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all parabolas, whose axes are parallel to $$\mathrm{Y}$$-axis, is

A
$$y_3=1$$
B
$$y_3=0$$
C
$$y_3=-1$$
D
$$y y_3+y_1=0$$
4
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$\left(1+y^2\right) \mathrm{d} x-x y \mathrm{~d} y=0$$ at $$x=1, y=0$$, represents

A
circle
B
pair of straight lines
C
hyperbola
D
ellipse
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12