$$\text{I} : y^{\prime}=\frac{y+x}{x} ; \quad \text { II }: y^{\prime}=\frac{x^2+y}{x^3} ; \quad \text { III }: y^{\prime}=\frac{2 x y}{y^2-x^2}$$

S1 : Differential equations given by I and II are homogeneous differential equations.

S2 : Differential equations given by II and III are homogeneous differential equations.

S3 : Differential equations given by I and III are homogeneous differential equations.

The differential equation of the family of circles touching $$y$$-axis at the origin is

The general solution of the differential equation. $$\left(\frac{y}{x}\right) \cos \left(\frac{y}{x}\right) d x-\left[\left(\frac{x}{y}\right) \sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] d y=0$$ is

If the half life period of a substance is 5 years, then the total amount of the substance left after 15 years, when initial amount is 64 gms is