STATEMENT - 1 :
Two cylinders, one hollow (metal) and the other solid (wood) with the same mass and identical dimensions are simultaneously allowed to roll without slipping down an inclined plane from the same height. The hollow cylinder will reach the bottom of the inclined plane first.
and
STATEMENT - 2 :
By the principle of conservation of energy, the total kinetic energies of both the cylinders are identical when they reach the bottom of the incline.
A small object of uniform density rolls up a curved surface with an initial velocity $$v$$. It reaches up to a maximum height of $$\frac{3 v^{2}}{4 g}$$ with respect to the initial position. The object is
STATEMENT 1
If there is no external torque on a body about its center of mass, then the velocity of the center of mass remains constant.
Because
STATEMENT 2
The linear momentum of an isolated system remains constant.
A solid sphere of radius $R$ has moment of inertia $I$ about its geometrical axis. If it is melted into a disc of radius $r$ and thickness $t$. If its moment of inertia about the tangential axis (which is perpendicular to plane of the disc), is also equal to $I$, then the value of $r$ is equal to