1

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)

+3

-0.75

Consider regular polygons with number of sides $$n=3,4,5....$$ as shown in the figure. The center of mass of all the polygons is at height $$h$$ from the ground. They roll on a horizontal surface about the leading vertex without slipping and sliding as depicted. The maximum increase in height of the locus of the center of mass for each polygon is $$\Delta $$. Then $$\Delta $$ depends on $$n$$ and $$h$$ as

2

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)

+3

-0

One twirls a circular ring (of mass M and radius R) near the tip of one's finger as shown in Figure 1. In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is r. The finger rotates with an angular velocity $$\omega$$

_{0}. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure 2). The coefficient of friction between the ring and the finger is $$\mu$$ and the acceleration due to gravity is g.The total kinetic energy of the ring is

3

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)

+3

-0

One twirls a circular ring (of mass M and radius R) near the tip of one's finger as shown in Figure 1. In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is r. The finger rotates with an angular velocity $$\omega$$

_{0}. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure 2). The coefficient of friction between the ring and the finger is $$\mu$$ and the acceleration due to gravity is g.The minimum value of $$\omega$$

_{0}below which the ring will drop down is4

JEE Advanced 2016 Paper 2 Offline

MCQ (Single Correct Answer)

+3

-0

A frame of the reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate system fixed on a circular disc rotating about a fixed axis with a constant angular velocity $$\omega$$ is an example of a non-inertial frame of reference. The relationship between the force $$\overrightarrow F $$

$$\overrightarrow F $$

where, v

Now, consider a smooth slot along a diameter of a disc of radius R rotating counter-clockwise with a constant angular speed $$\omega$$ about its vertical axis through its centre. We assign a coordinate system with the origin at the centre of the disc, the X-axis along the slot, the Y-axis perpendicular to the slot and the Z-axis along the rotation axis ($$\omega$$ = $$\omega$$ $$\widehat k$$). A small block of mass m is gently placed in the slot at r = (R/2)$$\widehat i$$ at t = 0 and is constrained to move only along the slot.

The distance r of the block at time t is

_{rot}experienced by a particle of mass m moving on the rotating disc and the force $$\overrightarrow F $$_{in}experienced by the particle in an inertial frame of reference is,$$\overrightarrow F $$

_{rot}= $$\overrightarrow F $$_{in}+ 2m ($$\overrightarrow v $$_{rot}$$\times$$ $$\overrightarrow \omega $$) + m ($$\overrightarrow \omega $$ $$\times$$ $$\overrightarrow r $$) $$\times$$ $$\overrightarrow \omega $$,where, v

_{rot}is the velocity of the particle in the rotating frame of reference and r is the position vector of the particle with respect to the centre of the disc.Now, consider a smooth slot along a diameter of a disc of radius R rotating counter-clockwise with a constant angular speed $$\omega$$ about its vertical axis through its centre. We assign a coordinate system with the origin at the centre of the disc, the X-axis along the slot, the Y-axis perpendicular to the slot and the Z-axis along the rotation axis ($$\omega$$ = $$\omega$$ $$\widehat k$$). A small block of mass m is gently placed in the slot at r = (R/2)$$\widehat i$$ at t = 0 and is constrained to move only along the slot.

The distance r of the block at time t is

Questions Asked from Rotational Motion (MCQ (Single Correct Answer))

Number in Brackets after Paper Indicates No. of Questions

JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2022 Paper 2 Online (1)
JEE Advanced 2022 Paper 1 Online (1)
JEE Advanced 2020 Paper 1 Offline (1)
JEE Advanced 2017 Paper 2 Offline (3)
JEE Advanced 2016 Paper 2 Offline (2)
JEE Advanced 2016 Paper 1 Offline (1)
IIT-JEE 2012 Paper 2 Offline (4)
IIT-JEE 2012 Paper 1 Offline (2)
IIT-JEE 2008 Paper 2 Offline (3)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2007 Paper 2 Offline (2)
IIT-JEE 2006 (1)
IIT-JEE 2001 (1)
IIT-JEE 2000 (1)

JEE Advanced Subjects

Physics

Mechanics

Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation

Electricity

Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves

Optics

Modern Physics

Chemistry

Physical Chemistry

Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry

Inorganic Chemistry

Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis

Organic Chemistry

Mathematics

Algebra

Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers

Trigonometry

Coordinate Geometry

Calculus