1
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1

List I describes four systems, each with two particles $A$ and $B$ in relative motion as shown in figures. List II gives possible magnitudes of their relative velocities (in $m s^{-1}$ ) at time $t=\frac{\pi}{3} s$.

List-I List-II
(I) $A$ and $B$ are moving on a horizontal circle of radius $1 \mathrm{~m}$ with uniform angular speed $\omega=1 \mathrm{rad} \mathrm{s}^{-1}$. The initial angular positions of $A$ and $B$ at time $t=0$ are $\theta=0$ and $\theta=\frac{\pi}{2}$, respectively.
(P) $\frac{\sqrt{3}+1}{2}$
(II) Projectiles $A$ and $B$ are fired (in the same vertical plane) at $t=0$ and $t=0.1 \mathrm{~s}$ respectively, with the same speed $v=\frac{5 \pi}{\sqrt{2}} \mathrm{~m} \mathrm{~s}^{-1}$ and at $45^{\circ}$ from the horizontal plane. The initial separation between $A$ and $B$ is large enough so that they do not collide. $\left(g=10 \mathrm{~ms}^{-2}\right)$.
(Q) $\frac{\sqrt{3}-1}{\sqrt{2}}$
(III) Two harmonic oscillators $A$ and $B$ moving in the $x$ direction according to $x_{A}=x_{0} \sin \frac{t}{t_{0}}$ and $x_{B}=x_{0} \sin \left(\frac{t}{t_{0}}+\frac{\pi}{2}\right)$ respectively, starting from $t=0$. Take $x_{0}=1 \mathrm{~m}, t_{0}=1 \mathrm{~s}$.
(R) $\sqrt{10}$
(IV) Particle $A$ is rotating in a horizontal circular path of radius $1 \mathrm{~m}$ on the $x y$ plane, with constant angular speed $\omega=1 \mathrm{rad} \mathrm{s}^{-1}$. Particle $B$ is moving up at a constant speed $3 \mathrm{~m} \mathrm{~s}^{-1}$ in the vertical direction as shown in the figure. (Ignore gravity.)
(S) $\sqrt{2}$
(T) $\sqrt{25\pi^{2}+1}$

Which one of the following options is correct?

A
I $\rightarrow$ R, II $\rightarrow$ T, III $\rightarrow$ P, IV $\rightarrow$ S
B
I $\rightarrow$ S, II $\rightarrow$ P, III $\rightarrow$ Q, IV $\rightarrow$ R
C
I $\rightarrow$ S, II $\rightarrow$ T, III $\rightarrow$ P, IV $\rightarrow$ R
D
I $\rightarrow$ T, II $\rightarrow$ P, III $\rightarrow$ R, IV $\rightarrow$ S
2
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A small roller of diameter 20 cm has an axle of diameter 10 cm (see figure below on the left). It is on a horizontal floor and a meter scale is positioned horizontally on its axle with one edge of the scale on top of the axle (see figure on the right). The scale is now pushed slowly on the axle so that it moves without slipping on the axle, and the roller starts rolling without slipping. After the roller has moved 50 cm, the position of the scale will look like (figures are schematic and not drawn to scale)
A
B
C
D
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Consider regular polygons with number of sides $$n=3,4,5....$$ as shown in the figure. The center of mass of all the polygons is at height $$h$$ from the ground. They roll on a horizontal surface about the leading vertex without slipping and sliding as depicted. The maximum increase in height of the locus of the center of mass for each polygon is $$\Delta$$. Then $$\Delta$$ depends on $$n$$ and $$h$$ as

A
$$\Delta = h{\sin ^2}\left( {{\pi \over n}} \right)$$
B
$$\Delta = h\left( {{1 \over {\cos \left( {{\pi \over n}} \right)}} - 1} \right)$$
C
$$\Delta = h\sin \left( {{{2\pi } \over n}} \right)$$
D
$$\Delta = h\,{\tan ^2}\left( {{\pi \over {2n}}} \right)$$
4
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
One twirls a circular ring (of mass M and radius R) near the tip of one's finger as shown in Figure 1. In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is r. The finger rotates with an angular velocity $$\omega$$0. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure 2). The coefficient of friction between the ring and the finger is $$\mu$$ and the acceleration due to gravity is g.

The total kinetic energy of the ring is
A
$$M\omega _0^2{(R - r)^2}$$
B
$${1 \over 2}M\omega _0^2{(R - r)^2}$$
C
$$M\omega _0^2{R^2}$$
D
$${1 \over 2}M\omega _0^2[{(R - r)^2} + {R^2}]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12