One mole of a monatomic ideal gas is taken along two cyclic processes E $$\to$$ F $$\to$$ G $$\to$$ E and E $$\to$$ F $$\to$$ H $$\to$$ E as shown in the PV diagram. The processes involved are purely isochoric, isobaric, isothermal or adiabatic.
Match the paths in List I with the magnitudes of the work done in List II and select the correct answer using the codes given below the lists :
List I | List II | ||
---|---|---|---|
P. | $$G \to E$$ |
1. | 160$${P_0}{V_0}$$ln2 |
Q. | $$G \to H$$ |
2. | 36$${P_0}{V_0}$$ |
R. | $$F \to H$$ |
3. | 24$${P_0}{V_0}$$ |
S. | $$F \to G$$ |
4. | 31$${P_0}{V_0}$$ |
Two rectangular blocks, having identical dimensions, can be arranged in either configuration-I or configuration-II as shown in the figure. One of the blocks has thermal conductivity $$\kappa $$ and the other 2$$\kappa $$. The temperature difference between the ends along the x-axis is the same in both the configurations. It takes 9 s to transport a certain amount of heat from the hot end to the cold end in configuration-I. The time to transport the same amount of heat in configuration-II is