1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{10^x+7^x-14^x-5^x}{1-\cos x}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is

A
$\log 2\left[\log \left(\frac{5}{7}\right)\right]$
B
$\log 4\left[\log \left(\frac{5}{7}\right)\right]$
C
$\quad \log 2\left[\log \left(\frac{7}{5}\right)\right]$
D
$\quad \log 4\left[\log \left(\frac{7}{5}\right)\right]$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 1}\left(\log _3 3 x\right)^{\log _x 8}=\ldots $$

A
$\mathrm{e}^{\log _3 8}$
B
$\quad \log _8 3$
C
$e^{\log _8 3}$
D
$\log _3 8$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , \text { if } x<0 \\ \frac{a}{\sqrt{x}} & , \text { if } x=0 \\ \frac{(16+\sqrt{x})^{\frac{1}{2}}-4}{16} & , \text { if } x>0\end{array}\right.$

is continuous at $x=0$, then $\mathrm{a}=$

A
4
B
8
C
-4
D
-8
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function

$$ f(x)=\left\{\begin{array}{cc} x+a \sqrt{2} \sin x & \text { if } 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & \text { if } \frac{\pi}{4} < x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x & \text { if } \frac{\pi}{2} < x \leq \pi \end{array}\right. $$

is continuous in $[0, \pi]$ then $a-b=$

A
$\frac{\pi}{4}$
B
$\frac{\pi}{12}$
C
$\frac{5 \pi}{12}$
D
$\frac{7 \pi}{12}$
MHT CET Subjects
EXAM MAP