If $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}$ then the point of intersection of the lines $\overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$ and $\overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is
If the projection of $\bar{a}$ on $\bar{b}+\bar{c}$ is twice the projection of $\bar{b}+\bar{c}$ on $\bar{a}$ also if $|\bar{b}|=2 \sqrt{2},|\bar{c}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{4}$ then $|\overline{\mathrm{a}}|=$
If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors and $\theta$ is the angle between them, then $\tan \frac{\theta}{2}=$