1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value and minimum value of the volume of the parallelopiped having coterminous edges $\hat{\mathrm{i}}+x \hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ and $x \hat{\mathrm{i}}+\hat{\mathrm{k}}$ are respectively

A
$\frac{1}{3 \sqrt{3}}+1, \frac{-1}{3 \sqrt{3}}+1$
B
$\frac{2}{3 \sqrt{3}}+1, \frac{-2}{3 \sqrt{3}}+1$
C
$\frac{1}{\sqrt{3}}+1, \frac{-1}{\sqrt{3}}+1$
D
$\frac{2}{\sqrt{3}}+1, \frac{-2}{\sqrt{3}}+1$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$

A
10
B
-10
C
9
D
$\quad-9$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$, and $\bar{c}$ be unit vectors. Suppose that $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{6}$, then $\overline{\mathrm{a}}$ is

A
$\pm(\bar{b} \times \bar{c})$
B
$\pm \frac{1}{2}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
C
$\quad \pm 2(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
D
$\quad \pm 4(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{3}$, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
MHT CET Subjects
EXAM MAP