1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4,|\overline{\mathrm{c}}|=4$. If the projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}$ is equal to projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is

A
5
B
36
C
6
D
25
2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $x$ for which the angle between the vectors $\overline{\mathrm{a}}=2 x^2 \hat{\mathrm{i}}+4 x \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ is obtuse, are

A

$0

B

$1

C

$1 \leq x \leq 2$

D

$-1

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three coplanar vectors such that $|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2, \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}}=8$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $45^{\circ}$ then the value of $|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$ is

A
8
B
$\sqrt{2}$
C
2
D
5
4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In the above figure, P divides AC in the ratio $3: 4$ and Q divides BC in the ratio $4: 3$. Then M divides AQ in the ratio

A

$15: 14$

B

$29: 13$

C

$21: 16$

D

$28: 9$

MHT CET Subjects
EXAM MAP