1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are three unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|^2+|\overline{\mathrm{a}}+\overline{\mathrm{c}}|^2=8$, then $|\overline{\mathrm{a}}+3 \overline{\mathrm{~b}}|^2+|\overline{\mathrm{a}}+3 \overline{\mathrm{c}}|^2=$

A
26
B
32
C
22
D
36
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\bar{a}=\hat{i}-\hat{j}, \bar{b}=\hat{j}-\hat{k}, \bar{c}=\hat{k}-\hat{i}$ then a unit vector $\bar{d}$ such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0=[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]$ is

A
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{11}}\right)$
B
$\pm\left(\frac{-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\right)$
C
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\right)$
D
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{\sqrt{6}}\right)$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $m \hat{i}+m \hat{j}+n \hat{k}, \hat{i}+\hat{k}, n \hat{i}+n \hat{j}+p \hat{k}$ lie in a plane then…

A
$\mathrm{m}+\mathrm{n}+\mathrm{p}=0$
B
$\mathrm{m}, \mathrm{n}, \mathrm{p}$ are in A.P.
C
$\mathrm{m}, \mathrm{n}, \mathrm{p}$ are in G.P.
D
$n, m, p$ are in G.P.
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of a parallelogram whose diagonals are the vectors $2 \bar{a}-\bar{b}$ and $4 \bar{a}-5 \bar{b}$, where $\bar{a}$ and $\bar{b}$ are unit vectors forming an angle of $45^{\circ}$ is

A
$3 \sqrt{2}$ sq. units
B
$\frac{3}{\sqrt{2}}$ sq. units
C
$\sqrt{2}$ sq. units
D
$\frac{\sqrt{2}}{3}$ sq. units
MHT CET Subjects
EXAM MAP