1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of integral values of $p$ for which the vectors $(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k}$ and $-3 \hat{\mathrm{i}}+\mathrm{p} \hat{\mathrm{j}}+(\mathrm{p}+1) \hat{\mathrm{k}}$ are linearly dependent vectors, are

A
0
B
1
C
2
D
3
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{p}=2 \hat{i}+\hat{k}, \bar{q}=\hat{i}+\hat{j}+\hat{k}, \bar{r}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ and a vector $\overline{\mathrm{m}}$ is such that $\overline{\mathrm{m}} \times \overline{\mathrm{q}}=\overline{\mathrm{r}} \times \overline{\mathrm{q}}, \overline{\mathrm{m}} \cdot \overline{\mathrm{p}}=0$, then $\overline{\mathrm{m}}=\ldots$.

A
$\hat{\mathrm{i}}-8 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
B
$-10 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
C
$-\hat{\mathrm{i}}-8 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
D
$2 \hat{i}+4 \hat{j}+\hat{k}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the area of parallelogram, whose diagonals are $\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\alpha \hat{\mathrm{k}}$ is $\frac{\sqrt{93}}{2}$ sq. units, then $\alpha=$

A
$-4,2$
B
$-3,-2$
C
2,1
D
4,2
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the lengths of three vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are $5,12,13$ units respectively, and each one is perpendicular to the sum of the other two, then $|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|=\ldots \ldots$.

A
$\sqrt{338}$
B
169
C
338
D
676
MHT CET Subjects
EXAM MAP