1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

ABCD is a quadrilateral with $\overline{\mathrm{AB}}=\overline{\mathrm{a}}, \overline{\mathrm{AD}}=\overline{\mathrm{b}}$ and $\overline{\mathrm{AC}}=2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}$. If its area is $\alpha$ times the area of the parallelogram with $\mathrm{AB}, \mathrm{AD}$ as adjacent sides, then the value of $\alpha$ is

A

$\frac{1}{2}$

B

$\frac{5}{2}$

C

$\frac{3}{2}$

D

2

2
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{c}}=5 \overline{\mathrm{a}}+6 \overline{\mathrm{~b}}$ and $3 \overline{\mathrm{c}}=\overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ then

A

$\bar{a}, \bar{b}, \bar{c}$ are non-collinear

B

$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are in the same direction

C

$\overline{\mathrm{a}}, \overline{\mathrm{c}}$ are in the same direction but $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are in the opposite direction

D

$\overline{\mathrm{c}}, \overline{\mathrm{b}}$ are in the opposite direction and $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are in the same direction

3
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(3 \hat{\mathrm{i}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{7}(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})$, then the value of $(\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}) \cdot\{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(2 \overline{\mathrm{a}}+\overline{\mathrm{b}})\}$ is

A

5

B

-5

C

3

D

-3

4
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two adjacent sides of a parallelogram $A B C D$ are given by $\overline{\mathrm{AB}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$ and $\overline{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$. The side AD is rotated by an acute angle $\alpha$ in the plane of parallelogram so that AD becomes $\mathrm{AD}^{\prime}$. If $\mathrm{AD}^{\prime}$ makes a right angle with the side AB , then $\cos \alpha=$

A

$\frac{\sqrt{17}}{8}$

B

$\frac{\sqrt{17}}{9}$

C

$\frac{\sqrt{17}}{13}$

D

$\frac{\sqrt{17}}{16}$

MHT CET Subjects
EXAM MAP