1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ is an obtuse angle between vectors $\bar{a}$ and $\overline{\mathrm{b}}$ such that $|\overline{\mathrm{a}}|=5,|\overline{\mathrm{~b}}|=3$ and $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=5 \sqrt{5}$ then $\bar{a} \cdot \bar{b}=$

A
10
B
-10
C
5
D
-5
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\mathrm{c}\left(\log _7 x\right) \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{b}}=\left(\log _\gamma x\right) \hat{\mathrm{i}}+3 \mathrm{c}\left(\log _\gamma x\right) \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ make obtuse angle for any $x>0$, then c belongs to

A
$\left(0, \frac{3}{4}\right)$
B
$\left(\frac{-3}{4}, 0\right)$
C
$\left(\frac{-4}{3}, 0\right)$
D
$\left(0, \frac{4}{3}\right)$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The altitude through vertex $A$ of $\triangle A B C$ with position vectors of points $A, B, C$ as $\bar{a}, \bar{b}, \bar{c}$ respectively is

A

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

B

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

C

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}} \times \overline{\mathrm{b}}|} $$

D

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{a}}|} $$

4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit vectors and $|\overline{\mathrm{a}}|=7$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\frac{1}{2} \overline{\mathrm{a}}$, then angle between the vectors $\bar{a}$ and $\bar{c}$ and angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are respectively

A
$90^{\circ}, 60^{\circ}$
B
$30^{\circ}, 60^{\circ}$
C
$90^{\circ}, 120^{\circ}$
D
$45^{\circ}, 90^{\circ}$
MHT CET Subjects
EXAM MAP